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Optical multiplexing techniques and their
marriage for on-chip and optical fiber
communication: a review
Svetlana Nikolaevna Khonina1,2*, Nikolay Lvovich Kazanskiy1,2,
Muhammad Ali Butt2,3 and Sergei Vladimirovich Karpeev1,2

Herein, an  attention-grabbing  and  up-to-date  review  related  to  major  multiplexing  techniques  is  presented  which  in-
cludes  wavelength  division  multiplexing  (WDM),  polarization  division  multiplexing  (PDM),  space  division  multiplexing
(SDM), mode division multiplexing (MDM) and orbital angular momentum multiplexing (OAMM). Multiplexing is a mech-
anism by which multiple signals are combined into a shared channel used to showcase the maximum capacity of the op-
tical links. However, it is critical to develop hybrid multiplexing methods to allow enhanced channel numbers. In this re-
view, we have also included hybrid multiplexing techniques such as WDM-PDM, WDM-MDM and PDM-MDM. It is prob-
able  to  attain N×M channels  by  utilizing N wavelengths  and M guided-modes  by  simply  utilizing  hybrid  WDM-MDM
(de)multiplexers. To the best of our knowledge, this review paper is one of its kind which has highlighted the most prom-
inent and recent signs of progress in multiplexing techniques in one place.
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Introduction
The relentless pressure for higher data rates ensured the
rapid growth  of  optical  components,  allowing  the  ter-
abits  (Tbits)  of  today’s  data  rates  to  be  enjoyed1,2.  All
began with exceptionally lossy fiber optics (hereafter rep-
resented  as  FOs)  coupled  with  a  broadband  source  that
could only relay a few Mb/s over a few meters. For half a
century, the  situation  improved  dramatically,  accom-
plishing  data  rates  of  even  Tbit/sec  conceivable  over  a
single FO. With the development of external cavity lasers
(ECL), it is possible to obtain linewidths below 1 MHz3,4,

Mach-Zehnder  modulators  (MZM)5,6 that  can  simply
function at 40 Gb/s and beyond7, low attenuation disper-
sion operated FOs, dispersion compensation FOs, optic-
al  amplification  networks  and  high-speed  detectors  that
render  numerous  compensation  hardware  redundant.
Multiplexing is  the  mechanism  by  which  multiple  sig-
nals  are  merged  into  a  shared  channel  used  to  tap  the
maximum volume of the optical links8. Multiplexing has
traditionally  been  used  to  share  the  medium’s inad-
equate  bandwidth  (hereafter  abbreviated  as  BW)  be-
tween multiple transmitters, but it is all about maximum 
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usage of the immense available BW for optical networks.
This  is  where  wavelength  division  multiplexing

(WDM) comes  in  where  numerous  channels  are  multi-
plexed  into  a  single  FO.  WDM  was  implemented  as  an
advance in delivering high volume data broadcast by let-
ting various wavelength channels be concurrently trans-
mitted  in  a  particular  FO9.  Polarization-division-multi-
plexing (PDM) is one more distinguished strategy to in-
crease data  broadcast  ability  with  two  polarized  chan-
nels10.  In  recent  times,  mode-division  multiplexing
(MDM) has appeared as a prospective method to upturn
the  data  broadcast  size  by  using  numerous  spatial
guided-modes  in  multimode  waveguides  (WGs),  which
can increase  multi-fold  optical  link  volume  by  employ-
ing  merely  a  single  wavelength  source11.  MDM tends  to
be highly appealing for imminent network-on-chip com-
puting  because  there  is  no  need  for  an  array  of  precise
wavelength lasers  like  WDM  networks.  Hybrid  multi-
plexing  methods,  for  instance,  MDM-WDM12 and
MDM-PDM13, have  also  been  introduced.  MDM  com-
munication has been established with several modes in Si
photonic integrated circuits (PICs), in which each mode
signified  a  distinct  information  channel14−16.  Numerous
constructions,  for  example,  multimode  interferometers
(MMIs)17, asymmetric directional couplers (ADCs)18 and
adiabatic mode-evolution couplers19 among others, have
been introduced as PICs MDMs.

Optical multiplexing  is  an  imperative  topic  and  in-
tense  research  is  carried  out  every  year  throughout  the

world. Several research articles based on different multi-
plexing  techniques,  for  example,  WDM,  MDM,  SDM
and PDM among others  are  published  on  regular  basis.
Figure 1 depicts the  number  of  publications  on  multi-
plexing  topics  published  in  2000-2020  indexed  in  the
Scopus database. In the year 2020, we can see a signific-
ant decrease in the number of publications which can be
attributable  to  the  inadequate  research  activities  during
COVID-19. In the Image Processing Systems Institute of
the Russian Academy of Science, we have fabricated sev-
eral  diffractive  optical  elements  for  the  realization  of
MDM  in  free-space20,21 and  in  FO22,23. Based  on  our  ex-
perience in  this  vast  field,  we  have  tried  our  best  to  re-
view recent  advancements  in  the  world  of  multiplexing.
The topics covered in this review are WDM, PDM, SDM,
MDM,  OAMM  and  three  hybrid  techniques  such  as
WDM-PDM,  WDM-MDM  and  PDM-MDM.  Only  the
most  prominent  works  are  highlighted and cited  in  this
paper.

Over  the  past  4  decades,  several  industrial  advances
have  endorsed  the  FO  volume  to  upsurge  by  about  10
times  every  four  years  as  seen  in Fig. 2.  Until  now,
broadcast  infrastructure  has  been  able  to  continue  with
the persistent rapid evolution of Internet protocol traffic.
The cost of sending additional data was still  practicable,
primarily  because  more  data  was  transmitted  over  the
same  FO  by  customizing  the  FO  end  apparatus.
However,  a  growing  number  of  FOs  will  surpass  their
performance in actual networks over the next decade or
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so24. Besides, this constraint of FO volume is not explicit
to a particular modulation scheme; rather it is necessary
to derive from a basic expansion of the Shannon volume
limit for  a  nonlinear FO channel  under reasonably gen-
eral  beliefs25.  The  drawback  is  that  at  spectral  efficiency
of  ~10  bit/s/Hz,  a  typical  single-mode  fiber  (SMF)  will
hold no more than 100 Tbit/s of data equal to the C and
L  amplification  wavelength  regime  of  an  erbium-doped
fiber amplifier.

The  paper  is  organized  in  the  following  manner:  At
first, the recent advances in the major multiplexing tech-
niques  such  as  wavelength  division  multiplexing
(WDM),  polarization  division  multiplexing  (PDM),
space division multiplexing (SDM), mode division multi-
plexing (MDM)  and  orbital  angular  momentum  multi-
plexing  (OAMM)  are  discussed  and  it  is  revealed  that
how multiplexing is vital to boost the capacity of the op-
tical link. It is important to progress hybrid multiplexing
techniques to  permit  higher  channel  numbers.  After-
wards,  hybrid  multiplexing  techniques  such  as  WDM-
PDM, WDM-MDM and PDM-MDM are discussed and
recent  developments  in  this  topic  have  been  presented.
The  authors  of  this  paper  are  working  on  this  topic  for
more than 3 decades. In the end, a section related to the
authors’ contribution to the multiplexing field is presen-
ted followed by the concluding remarks. 

Wavelength division multiplexing (WDM)
Network BW is like the wardrobe in your home, you will
never  get  plenty  of  it.  And  the  data  flow  is  making  the
demand  for  communication  volume  expand  faster  than
the  teenager’s  wardrobe  with  a  no-limit  credit  card.

Short email messages are being switched to BW-hogging
animated graphics.  Data,  video,  and  voice  signal  broad-
cast  networks  that  had  sufficient  space  just  a  few  years
ago. Now,  the  telecom  sector  wants  out  of  the  box  ap-
proaches to fulfill the never-ending need for BW. WDM
technology  enables  optical  channels  to  be  concurrently
transmitted  via  a  single  FO  at  different  wavelengths,
which  is  a  valuable  source  of  making  full  usage  of  the
low-loss  characteristics  of  FOs  over  a  large  wavelength
range.  The  term  WDM  is  generally  used  for  an  optical
carrier (usually defined as wavelength), while frequency-
division  multiplexing  (FDM) is  usually  used  for  a  radio
carrier (which is most frequently termed as a frequency).
Meanwhile,  wavelength and frequency are connected by
a directly inverse correlation, the two expressions repres-
ent  a  similar  notion.  The  use  of  the  orthogonal-fre-
quency-division-multiplexing (OFDM)  format  for  pass-
ive  optical  networks  has  piqued  researchers’ interest re-
cently.  OFDM  signals  have  high  spectral  efficiency,  a
high tolerance for fiber chromatic dispersion, and a great
degree  of  flexibility  when  it  comes  to  multiple  service
provisioning and dynamic BW allocation26−29.

The  theory  was  first  proposed  by  Delange  in  197030,
but it was in the mid-1977 that basic research on WDM
technology  had  only  begun.  The  research  focused  on
practical  implementations  for  communication
networks31,32.  Since  then,  exploration  has  accelerated,
along  with  histrionic  development  in  FOs,  light  sources
and photodetectors  (PDs).  In  particular,  optical  multi-
plexer/demultiplexers  (MUX/DEMUX),  which  are  the
main  elements  in  the  WDM  broadcast  networks,  are  at
present  among  the  most  common  R&D  methods.  A
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WDM network employs a MUX to connect the signals at
the  transmitter,  and  a  DEMUX  to  break  them  apart  at
the receiver. It is probable to provide a network that does
this  concurrently  and  can  act  as  an  optical  add-drop
MUX  with  the  proper  type  of  FO.  Etalons,  thin-film-
coated optical  glass-based single-frequency Fabry–Pérot
interferometers have historically been used as optical fil-
tering devices. Several types of MUX/DEMUX have been
suggested and produced for data purposes.

Even  though  WDM  technology  is  not  currently  fully
grown,  it  has  been  increasingly  employed  in  functional
networks in some countries. Predictably, this technology
will dominate shortly optical communication infrastruc-
ture.  This  is  largely  owing  to  the  outstanding  use  of
WDM, which is focused on the employment of the broad
low-loss spectrum region in FOs. Currently, WDM tech-
nology  is  one  of  the  widespread  study  and  expansion
topics and several review articles have already been pub-
lished33,34. The basic configuration of the one-way WDM
broadcast is  shown in Fig. 3. The benefits of WDM net-
works are increase in broadcast  size per fiber,  reduction
in network cost, concurrent broadcast of multiple modu-
lation-scheme signals, and service channel expandability
after  FO  implementation.  Because  of  these  reasons
WDM technology is  supposed to be broadly installed in
diverse fields of optical communication networks.

Generally, WDM networks are used by telecom enter-
prises  because  it  facilitates  the  volume  expansion  of  the
network deprived of adding more FOs to the network. It
is possible  to  provide  numerous  generations  of  techno-
logy  expansion  in  their  optical  network  by  employing
WDM technology and optical amplifiers without renov-
ating  the  mainstay  network.  The  volume  expansion  of
the given connection can be achieved by merely improv-
ing  the  MUX  and  DEMUX  designs  at  the  transmitter
side  and  receiver  side,  respectively.  In  ref.35,  a  white-
lighting  (WL)  and  WDM-visible  light  communication

(VLC)  network  with  a  free-space  distance  of  more  than
20 meters and a lighting distance of 3 meters is validated
by  an  RGB  triple-source  polarization-multiplexing
scheme, broadcast  gratings,  and  a  dual  convex  lens.  In-
tegrating  four-level  pulse  amplitude  modulation  (PAM-
4) with  a  triple  source  polarization-multiplexing  net-
work,  the  peak  broadcast  rate  is  substantially  increased
to  300  Gb/s.  WL  is  created  by  multiplexing  the  RGB
lights  with  two  gratings  and  disjointed  by  DEMUX  via
the other  two  gratings.  By  assuming  a  dual-convex  dif-
fuser, the WL is spread over 3 meters of free space to de-
liver general WL illumination (>100 lux).  These verified
WL and WDM-VLC networks achieve a  high broadcast
rate with an indoor lighting target. It would open a nov-
el  classification  for  lighting  and  optical  broadcast.  The
basis of the suggested WL and WDM-VLC network em-
ploying broadcast gratings and a tailored diffuser over a
20-meter  FSO  link  with  a  3-meter  lighting  distance  is
shown  in Fig. 4.  The  images  of  the  experimental  setup
are also shown in Fig. 4(a), and the detailed experiment-
al results can be found in ref.35.

A novel design of an integrated WDM receiver chip is
manufactured  on  the  SOI  platform  which  is  equipped
with a 25-channel Si nanowire-AWG36.  Every channel is
incorporated with a Ge-on-Si WG PD. The PDs display a
current density of 16.9 mA/cm2 at −1 V and extraordin-
ary sensitivity of 0.82 A/W at 1.55 μm. Wide BWs of 23
GHz and 29 GHz are attained at 0 and −1 Volt, respect-
ively. Every channel can function at 50 Gb/s with low op-
tical input power even below zero bias resulting in a col-
lective data rate of 1.25 Tb/s. The optical micrographs of
the  receiver  chip  are  revealed in Fig. 4(b).  Eye  diagrams
of channels 5, 10, 15, 20, and 25 at 40 Gb/s and 50 Gb/s
were obtained from PD currents between 90 and 110 μA,
as displayed in Fig. 4(c). The experimental details can be
found in ref.36. 
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Polarization division multiplexing (PDM)
Multiplexing  is  an  encouraging  solution  in  reply  to  the
ongoing demand for increased broadcast volume. As the
most  common  and  advanced  form  of  multiplexing,
WDM  has  been  used  successfully  for  many  years.  With
the  growing  requirement  for  BW  development,  dense
WDM  networks  with  a  range  of  laser  sources  are  being
utilized, resulting  in  dense  and  costly  deployment.  Be-
sides,  it  is  demonstrated  that  a  typical  single-mode  FO
cannot hold more than 100 Tbit/s data due to its physic-
al  limitation37.  It  is  also  important  to  introduce  new
strategies to additionally improve the broadcast BW. The

lucrative approach is  to multiplex the various aspects  of
the  single-wavelength  light  carrier  such  as  polarization,
referred to as PDM.

A desirable  proposal  for  network  operators  is  to  im-
prove the broadcast capability or spectral effectiveness of
a current FO network deprived of needing to modify any
aspect of the communication hardware or software, so it
will  dramatically  reduce  the  downtime  of  the  network
and  decrease  the  cost  of  apparatus  and  connection  for
network upgrade.  One  optical  method  employed  to  en-
hance  the  performance  of  optical  broadcast  networks  is
PDM38.  The  advantage  of  PDM  is  that  the  broadcast
volume  is  multiplied  since  separate  signals  can  be
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distributed  over  orthogonal  positions  of  polarization  of
the same light39. The two polarization channels are separ-
ated at  the  receiver  end  and  are  independently  recog-
nized.  Ideally,  at  each  end  of  the  FO  link,  the  operator
only needs to install a transceiver and a related polariza-
tion MUX/DEMUX, while the residual network is unaf-
fected  which  includes  FOs,  repeaters,  amplifiers,
wavelength  MUX/DEMUX,  optical  add/drop  MUX,
switching optics  and  even  the  network  managing  soft-
ware, or  with  a  slight  alteration.  The  spectral  perform-
ance of  the  network can be  enriched by minimizing the
channel wavelength spacing or aggregating the bit rate of
the transceiver. In recent times, several schemes are pro-
posed  such  as  monitoring  of  pilot  tones40,41,  multi-level
electronic  detection42 and  cross-correlation  recognition
of  the  two  demultiplexed  channels43.  However,  this
method  entails  a  momentous  re-design  of  the  network,
and are thus not appropriate for upgrading current net-
works, although  it  might  be  practicable  for  new  net-
works to be introduced.

Subcarrier  multiplexing  (SCM)  is  another  method
used  to  improve  the  BW of  optical  networks.  The  SCM
technique joins  numerous  electrical  signals  having  di-
verse frequencies to be communicated over the same op-
tical  light.  Passive  optical  networks  (PONs)  based  on
SCM allow multiple consumers to share the optical chan-
nel  and  the  related  optical  apparatuses  minimizing  the
total network cost44. In recent years, the commercial dis-
posal  of  cost-effective  electro-optic  modulators  with
wide frequency  ranges  and  strong  linearity  has  encour-
aged  the  use  of  SCM  methods  with  OFDM-based
signals45.  The  integration  of  PDM  and  SCM  strategies
opens  the  potential  for  optical  network  volume  to  be
maximized.

PDM is a simple method, requiring two channels with
orthogonal polarizations to be combined only by a polar-

ization  beam  combiner  (PBC)  as  shown  in Fig. 5.
However, it is not easy to distinguish the two channels at
the receiving end with tolerable crosstalk (CT), since the
polarization positions of the two channels are no longer
linear,  and randomly change with time. To isolate those
with a polarization beam splitter (PBS), it is conceivable
to  observe  the  CT  of  the  two  channels  in  real-time  and
then make use of the scrutinized data to vigorously regu-
late the positions of  polarization of  the two polarization
channels. To date, no good method of optical CT track-
ing  has  been  identified;  thus,  one  must  depend  on  the
identified electronic signal in the receiver to display CT.
Research has been devoted to designing the MUX, as an
elementary functional  component,  with  silicon on insu-
lator  (SOI)  platform46,47.  Likewise,  much  attention  has
also been paid to designing the other important modules
for  example  data  exchange48,  mode  filter49, power  split-
ter50, and switch51, among others.

Interest  in  visible  light  communication  (VLC)  has
gradually  grown,  fueled by the  dramatic  growth of  LED
technology52,53.  Widespread  usage,  cost-efficient  high
brightness,  improved BW compared to other traditional
RF-based devices make it the most capable contender for
concurrent lighting  and  communication  mainly  in  par-
ticular areas such as hospitals, aircraft, and high-security
prerequisite  environments,  among  others.  Though,  the
comparatively poor  intrinsic  modulation  BW  of  com-
mercially offered  LED  is  the  major  technological  diffi-
culty  in  the  VLC  framework.  Recently,  a  VLC  network
based on PDM is proposed54. The polarization feature of
visible  light  carries  with  it  another  degree  of  freedom
that can multiply the volume of the broadcast. To obtain
PDM, two orthogonal groups of polarizers and incoher-
ent  RGB  LEDs  are  introduced.  Due  to  the  minimal
laboratory parameters, the red LED chip of the RGB LED
is  used.  Moreover,  the  spectrally  effective  16QAM
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Nyquist  single  carrier  frequency  domain  equalization
(SC-FDE) is established. However, it was validated on an
optical bench, and hence not suitable for CMOS integra-
tion. Division-of-focal-plane  (DoFP)  polarimeters  com-
bined  with  CMOS  technology  allow  dense,  polarization
imaging networks55. The DoFP polarimeters are made up
of aluminium  nanowire  materials  and  attached  to  cus-
tom CMOS  chips.  This  device  includes  a  complete  im-
age processing pipeline that runs at frame rates of 40 f/s
and  thus  allows  real-time  polarization  properties  to  be
derived from the imaged environment. Successful incor-
poration of high-speed photodiodes into CMOS ICs for a
functioning CMOS-compatible  optical  digital  clock  de-
livery is  established and electrical  recovery network in a
0.35 μm CMOS process. This paper shows the feasibility
of  low-cost  optical-electrical  signal  conversions  at  GHz
speeds56.

In ref.57, a Verilog model of the PDM VLC network is
presented. The  model  is  regulated  by  utilizing  the  in-
formation from manufactured filters and is joint with di-
ode and receiver circuit models. Light is characterized by
its  three  major  properties,  i.e.,  wavelength,  polarization,
and intensity. In this network, the light intensity is used
to transport the encrypted data,  and polarization to dis-
crete multiple  channels.  Each  input  light  signal  at  a  di-
verse  polarization  angle  is  modulated  to  symbolize  one
digital  data channel and joined into one in free space at
the source. This incident light is going to form the input

to the network. Each data channel has a distinctive polar-
ization  angle.  In  the  case  of  the  2-channel  network,  the
polarization angle  of  the  data  channels  is  0°  and 90°.  In
the case of  the 3-channel  network,  the data channel  po-
larization  angles  are  0°,  60°  and  120°.  Whereas  in  an
event  of  a  4-channel  network,  0°,  45°,  90°  and  135°  are
used as  the  data  channel  polarization  angles.  This  com-
bined input light signal is collected by a DoFP polarimet-
er  array  which  may  have  2,  3  or  4  filters  depending  on
the channel design. Each filter from the array will have a
polarization angle that matches the polarization angle of
one channel of the input light. This work signifies a good
starting point to attain improved outcomes for a 4-chan-
nel VLC network, plus the usage of channel coding to in-
crease  the  output.  The  schematic  of  the  4-channel  VLC
network is shown in Fig. 6. 

Space division multiplexing (SDM)
Currently,  most  optical  broadcast  networks  utilize
single-mode fibers (SMFs) to transfer data over long dis-
tances. More degrees  of  freedom are accustomed to im-
proving  the  data  rate  of  SMFs,  such  as  different
wavelengths, both  polarizations  and  quadrature  amp-
litude  modulation58.  Technologies  for  instance  coherent
receivers  and  more  sophisticated  signal  processing  that
can  reimburse  many  of  the  effects  that  arise  during  the
broadcast to further improve the data capacity of optical
broadcast networks. However, with the latest technologies,
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the data  rates  or  spectral  competence  that  can  be  at-
tained  in  an  SMF  tends  to  be  constrained  by  noise  and
non-linearity  with  a  volume of  100 Tbit/s  per  fiber  or  a
spectral  efficiency  of  about  10  bit/s/Hz37. With  a  grow-
ing request for greater data rates, the last degree of free-
dom for multiplexing, that is space, has been intensively
studied  in  the  last  decade  as  a  potential  resolution  to
meet the BW demand.

The schematic representation of the N × N SDM com-
munication structure is  demonstrated in Fig. 7. The sig-
nals  are  primarily  produced  by N number of  transmit-
ters.  MDM  of  the N signals  is  attained  via  the  spatial-
mode  multiplexer.  Eventually,  the  signals  supported  by
spatial  modes  are  transferred  to  the  few-mode  fiber
(FMF). All the modes on the same wavelengths are to be
handled  as  a  unit  of  an  SDM  super-channel  during  the
broadcast  i.e.,  they  are  amplified,  dropped,  and  added
simultaneously  deprived  of  individual  mode  processing.
After  broadcast  over  FMF,  the  received  signals  are  then
mode  DEMUXED  by  a  spatial-mode  demultiplexer.
Then N coherent receivers detect the demultiplexed sig-
nals.  The  signals  are  then  transformed  from  an  optical-

to-electrical  domain,  electrically  sampled  with  high-
speed ADCs, and then analyzed utilizing a DSP module.
The MIMO algorithm is employed to compensate for the
mode coupling and/or CT in the channel that can be ap-
plied at  S-MUX/DEMUX or inside the FMF.  The chan-
nel  volume  is  supposed  to  be  improved  by N times  as
compared to single-mode configuration if the MUX/DE-
DUX  has  a  unit  transfer  function  with  an N-rank equi-
valent  to  the  number  of  modes  maintained  in  an  SDM
FO.

Various parallel spatial channels are employed in SDM
to upsurge  the  data  throughput  of  a  broadcast  network.
Parallel  SMF  networks  can  be  employed  to  increase  the
data rate by the number of utilized FOs to realize SDM as
presented in Fig. 8(a). However, with the number of par-
allel  networks,  the  price  and  energy  ingesting  of  such
parallel networks also surge linearly and there may be at-
tractive  methods  to  realize  SDM,  where  some  elements
like  FOs,  amplifiers,  transmitters,  and  receivers  can  be
commonly used between the various spatial channels, re-
ducing the  cost/bit.  Several  distinct  methods  of  imple-
menting  SDM  with  FOs  are  shown  in Fig. 8.  Multicore
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FOs  (MCFs)  with  uncoupled  cores  are  one  rather
straightforward way59. Each core acts basically as an SMF
in such FOs60.  The CT between cores is  low enough not
to  damage  the  performance  of  each  channel  when  the
cores  are  sufficiently  separated,  see Fig. 8(b).  Many  low
CT FOs and up to 37 cores have been manufactured and
broadcast has been demonstrated over long distances61,62.
Besides, amplifiers have been introduced that can simul-
taneously  amplify  all  cores63. Mode  division  multiplex-
ing  (MDM)  is  another  method  for  performing  SDM
where different orthogonal modes of FO are employed as
separate spatial  channels to transfer data.  FMFs are typ-
ically  used  for  the  MDM  method  as  shown  in Fig. 8(c).
FMFs are known as multi-mode fibers (MMFs) that can
hold  few  modes,  often  in  the  range  of  2 –10  modes64,65.
Coupling  between  the  different  FO  modes  should  be
considered in MDM. When communicating over longer
distances, mode coupling is inevitable. There will be a ro-
bust  coupling  between  modes  of  the  same  mode  group,
even  for  short  distances.  By  employing  multiple-input-
multiple-output (MIMO) signal processing, mode coup-
ling can be restricted.

Another  prospect  for  SDM  is  multicore  FOs  with
cores  that  are  adequately  close  to  couple,  see Fig. 8(d)66.
The  light  travels  between  the  cores  in  super-modes  and
acts  analogous  to  FMF.  Integration  between  multicore
and FMFs has also been shown in Fig. 8(e). Here, several
cores  are  supported  by  each  core  of  the  multicore  FO
and the FO can thus reach an enormous number of spa-
tial channels. Several such FOs and their broadcasts have
been demonstrated in ref.67,68.  Besides,  SDM can help to
address  the  growing  energy  consumption  of  broadcast
networks  which  is  in  line  with  the  need  for  higher  data
speeds69.  It  is  more  energy  efficient  to  employ  multiple
spatial  channels  rather  than  optimizing  the  signal-to-
noise  ratio  by  increasing  the  input  power  into  FOs  can
maximize the data rate in the FO. 

Mode division multiplexing (MDM)
Silicon (Si) photonics has been technologically advanced
in the last decade as a result many attractive applications
are realized  on  an  SOI  platform  utilizing  the  comple-
mentary metal-oxide-semiconductor  (CMOS)  fabrica-
tion  technology70,71.  Si  has  a  large  transparent  window
covering the near-IR to mid-IR wavelength range, which
is critical for achieving low-loss on-chip optical WGs72,73.
Moreover,  it  is  conceivable  to  have  compact  photonic
devices owing to the high index contrast  between the Si
core and the SiO2 substrate74,75. The small footprint helps

in decreasing power usage for active Si photonic devices.
At  present,  various  Si  photonic  devices  are  established
with  extraordinary  performances76−79.  Most  of  the  time,
PICs  are  typically  equipped  with  merely  fundamental
mode because  higher-order  modes  are  typically  very  ir-
ritating  because  of  the  intolerable  CT  and  propagation
loss  produced  due  to  multimode  interference  (MMI)80.
Thus,  the  optical  WGs  are  typically  aimed  to  be  single-
mode, such that higher-order modes are cut off. The cir-
cumstance  is  currently  evolving  with  the  progress  of  Si
photonics having  an  exceptional  feature  of  its  high  re-
fractive  index  difference.  Using  a  variety  of  different
technologies,  several  on-chip  MDM  compatible  mode
MUXs  have  been  presented81−85. In  a  spot-based  ap-
proach,  most  on-chip  networks  operate  and  use  grating
couplers to vertically emit light spots with diverse phases.
The intended mode within an FMF can be stimulated by
generating the right field pattern above the chip. Differ-
ent  devices  have  been  testified  based  on  the  SOI
platform86,87.

Because of their small footprint, low power consump-
tion, and  high  production  output,  PICs  have  demon-
strated  significant  benefits  in  optical  transceivers.  For
MDM  optical  interface,  multimode  chip-to-fiber
couplers  provide  an  essential  link  between  PICs  and
FMF.  Chip-based  mode  MUX/DEMUX  and  on-chip
MDM connectivity have gotten a lot of attention. Sever-
al  integrated  mode  converters  and  multiplexers  have
been proposed,  but  only  a  handful  are  capable  of  mul-
timode  coupling83. The  most  difficult  part  is  the  mul-
timode interface, which serves as a link between the on-
chip multimode WG and the FMF. Chip-to-fiber vertic-
al/edge  connection  typically  uses  a  grating  coupler  or  a
spot size  coupler.  To  meet  the  huge  mode  field  differ-
ence between integrated WG and silica  fiber  in  the  case
of  multimode,  specific  designs  must  be  used.  A  pair  of
2D grating couplers with significant coupling loss and a
push-pull solution was presented for exciting 6 linear po-
larization  modes87.  Later,  other  multimode  grating
couplers were constructed with a simpler and more com-
pact  construction.  While  the  grating  coupler’s  intrinsic
limitation, notably its restricted bandwidth, prevents the
application  from  being  compatible  with  wideband
WDM.

Figure 9 displays the dispersion curves of the standard
SOI strip WG with a silicon core height of 220 nm88. It is
well noted that SOI strip WG has extraordinary birefrin-
gence  and  robust  mode  dispersion.  Consequently,
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mode-selective  modulation  with  low  excess  losses  and
low  inter-mode  CT  can  be  realized  for  all  the  guided
modes  in  a  multimode  SOI  WG  even  though  these
guided modes are coincided in space, as displayed in the
inset  of Fig. 9.  This  brings  the  possibility  of  the  use  of
higher-order modes by incorporating multimode optical
WGs  in  the  design  of  Si  photonic  devices.  Light  has  a
limited  range  of  physical  characteristics  such  as
wavelength,  polarization,  amplitude/phase  that  can  be
employed  to  encrypt  data.  However,  all  these  encoding
methods are approaching their limits and soon the con-
nection speeds will fall far short of demand. There is only

one  remaining  degree  of  freedom  that  is  still  essentially
unexplored  i.e.,  “Space ”.  In  this  way,  space  is  the  final
destination  of  FO  communication.  In  MDM,  different
spatial  profiles  (i.e.,  different  shapes)  known  as  modes
are  allocated  light  beams  for  different  channels.  A
straightforward scenario will be sending one channel on
a  laser  beam  shaped  like  a  circle,  one  like  a  square  and
one like a triangle. The shapes used are more complex in
operation  and  have  unique  mathematical  and  physical
features. This  technique  is  arguably  the  most  ground-
breaking  revolution  in  how  data  has  been  transmitted
down FOs since at least the 1980s. MDM method offers a
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novel tactic for realizing more channels and augmenting
the  link  volume  with  a  single  wavelength  carrier89.  The
operation principle of the MDM is shown in Fig. 10.

In ref.91, a novel scheme of an on-chip two-MDM cir-
cuit  is  proposed  by  employing  tapered  directional
coupler  (DC)-based  mode  MUX  and  DEMUX  on  the
SOI platform. The design offers high merits such as low
insertion loss of 0.3 dB, low mode CT of < −16 dB, wide
BW which  is  approximately  100  nm.  The  mode  multi-
plexing testing is performed on the manufactured circuit
with  non-return-to-zero  (NRZ)  on-off  keying  (OOK)
signals  at  40  Gbit/s. Figure 11(a) displays the  manufac-
tured device consisting of a MUX (detail in Fig. 11(b)) at
the input side, a multimode data bus WG (750 nm wide),
and a DEMUX at the output side. The width of the nar-
row WG is 355 nm, the wide WG is tapered from 748 nm
to 848 nm, and the coupling gap is 100 nm, as presented
in Fig. 11(c) and 11(d).

In  ref.92,  a  compact  Si  mode  (de)MUX  with  cascaded
asymmetrical  DCs  is  verified.  A  4-channel  mode
MUX/DEMUX  is  considered  and  comprehended  for
TM-polarized light. The manufactured device has an ex-
cess loss of <1 dB as well as low CT ≤ 23 dB over a wide
range of wavelengths. It is possible to add more channels
by employing two arrangements of orthogonal-polariza-
tion  modes  (e.g.,  2N=8)  multiplexed  when  preferred.
Power  splitters  split  the  light  from  the  laser  diode  into
2N channels.  As  the  power  of  each  channel  is  1∕2N,  an
optical  amplifier  should  be  added  to  reimburse  for  the
loss if necessary. The polarization of half of the channels

is alternated via a polarization rotator array. As a result,
two  orthogonally  polarized  lights  are  achieved.  The  2N
channels  are  then  linked  to  the  2N optical  modulators.
These  2N channels  are  eventually  merged  with  a  MUX.
At the receiver end, multichannel signals can be demulti-
plexed  with  a  DEMUX which  is  then  collected  by  a  PD
array. As it is typically uncommon for PDs to be suscept-
ible to  polarization,  polarization  rotators  are  added  be-
fore the PD array to use the same PDs on the chip, which
facilitates  streamlining  the  configuration  of  the  chip.
Since merely  one  laser  is  required  and  there  is  no  re-
quirement to  critically  monitor  the  wavelength,  the  ad-
ministration  of  the  hybrid  multiplexing  network  is  easy
and  the  cost  is  supposed  to  be  minimal.  The  graphical
representation of the demonstrated design is displayed in
Fig. 11(e).

A  unique  on-chip  information  conversion  circuit  for
the  MDM  signals  is  proposed  by  employing  two  μ-ring
resonators (μ-RRs) established mode converters93. Single
and  four  wavelengths  non-return-to-zero  on-off-keying
signals at 10 Gb/s passed on diverse modes are managed.
The bit error ratio results indicate practical power losses.
The  graphical  representation  of  the  proposed  circuit  is
shown in Fig. 11(f). MDM signals encompassing TE0 and
TE1 modes  transfer  into  the  first  μ-RR  (μ-RR-1),  which
achieves the TE1–TE0 mode transformation. The config-
uration  of  μ-RR-1  is  displayed  in Fig. 11(g).  The  drop
port  and  ring  bend  WGs  of  μ-RR-1  are  designed  to  be
single-mode,  whereas  through  port  WG’s  width  is
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precisely tailored  to  gratify  the  phase-matching  condi-
tion  in  the  coupling  region  between  fundamental  mode
of  ring  bend  WG  and  TE1 mode  of  through  port  WG.
TE1 mode  signal  will  be  transformed  into  TE0 mode  at
the drop port whereas the TE0 mode signal retains unaf-
fected by propagating through μ-RR-1 at the through the
port.  Instead,  the  μ-RR-2  works  as  a  TE0-TE1 mode
transformer.  The assembly of  μ-RR-2 is  symmetric  with
μ-RR-1, as displayed in Fig. 11(h). 

Orbital angular momentum multiplexing
(OAMM)
Due to its potential to provide high-speed wireless trans-
mission,  wireless  communication  employing  OAM  has
recently attracted a  lot  of  attention as  an emerging pos-
sibility beyond  5G  technology.  OAM  is  a  physical  fea-
ture  of  EM  waves  in  which  the  propagation  path  is
defined  by  a  helical  phase  front.  Wireless  OAMM  may
effectively boost the transmission rate in a point-to-point
link such as wireless backhaul and/or fronthaul since the
feature  can  be  exploited  to  establish  numerous  separate
channels94,95.  Yan et  al.  established the viability  of  OAM
multiplexing by reaching 32 Gbps transmission utilizing
the 28 GHz frequency in 201494 and the 60 GHz band in
201696. Because OAMM is a novel technique, it is critical
to test its viability from different viewpoints. In the same
way, as multiple-input multiple-output (MIMO) techno-
logies employ multiple antenna elements, this technique
does  as  well.  Multiple  beams  conveying  various  OAM
modes are superimposed using the elements.

Antenna components are linked to phase shifters that
rotate n ×  360o to  form  the  beam  carrying  the  OAM

mode n (L=n). Figure 12(a) depicts an example of OAM
mode  0,  1,  and  2  beam  generation  employing  uniform
circular  arrays  (UCAs)  with  eight  antenna  components.
It’s worth  noting  that  for  multiple  OAM  mode  genera-
tion, it  is possible to utilize either a single UCA or mul-
tiple UCAs. In the first example, a single UCA transmits
superposed beams.  Concentric  multiple  UCAs  are  em-
ployed  in  the  later  situation.  Separation  of  OAM-carry-
ing  beams  can  be  accomplished  in  a  manner  like  that
used  for  the  generation,  with  antenna  components
coupled to phase shifters rotating in different directions.
Rotations  of n ×  360o are  orthogonal  to  one  another  if
the  number  of  antenna  elements  is  more  than  2n.  As  a
result,  the  signals  of  each  OAM  mode  may  be  isolated
from those of mixed OAM modes without aliasing. Fig-
ure 12(b) depicts  an  example  of  each  antenna  element’s
phase  concerning  the  previous  example.  As  with  beam
production,  such  beam  separation  can  be  accomplished
using single or multiple UCAs. In the former situation, a
divider is installed between the antenna components and
phase shifters.

Many  diverse  tests  have  proven  the  viability  of
OAMM94,96,97.  Yan et al.  showed 32 Gbps OAMM across
a  60  GHz  mm-wave  band  with  four  concurrent  OAM
modes (mode= –3,  –1,  1  and  3)  with  16  QAM  modula-
tion.  The  transmission distance  was  2.5  meters,  and a  4
to 1 combiner was employed to multiplex 4 SPPs96. Mah-
mouli  et  al.  used  a  holographic  plate  and  spiral  phase
plate  to  transmit  4  Gbps  uncompressed  video  over  a  60
GHz mm-wave frequency97. Over 10 meters, however, no
Gbps  level  transmission  trials  have  been  documented.
When  a  UCA  is  employed  for  OAM  beam  production,
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the capacity upper limit of OAM multiplexing is not su-
perior  to  that  of  MIMO  technology,  according  to  ref.98.
Mohammadi  et  al.  investigated  the  performance  of  the
system  as  a  whole99.  In  ref.100, the  link  budget  was  ex-
amined  while  the  mode  dependency  of  the  propagation
loss was clarified. Significant research has been done and
is  currently  being  done,  such  as  studies  on  calibration
techniques101, examination of the impacts of multipath102,
and so on103, in addition to the work described above. 

A marriage of WDM, MDM and PDM
techniques
Different  multiplexing techniques such as  WDM, PDM,
SDM and MDM are presented in previous sections have
been established recently. However, it is attractive to cul-
tivate  hybrid  multiplexing  methods  to  allow  enhanced
channel  numbers.  Numerous  Si-based  on-chip  hybrid
MUX/DEMUX  are  demonstrated  by  integrating  more
than one multiplexing technique, as shown in Fig. 13. In
this  section,  we  will  look  at  the  recent  development  of
on-chip  hybrid  MUX/DEMUX  by  utilizing  hybrid
WDM-PDM, WDM-MDM and PDM-MDM techniques.
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Hybrid WDM-PDM technique
Two  attractive  techniques  such  as  WDM  and  the  PDM
are  combined  to  realize  on-chip  hybrid  WDM-PDM
MUX/DEMUX  by  integrating  WDM  and  polarization
manipulating  components  on  the  same  chip.  Array
waveguide  gratings  (AWGs)  are  widely  used  in  multi-
channel  WDM  networks.  Recently,  a  hybrid  WDM-

PDM MUX/DEMUX based on the SOI platform is estab-
lished  by  incorporating  an  (N +  1)  ×  (N +  1)  bi-direc-
tional  AWG with a polarization-diversity circuit  (PDC).
An  18-channel  hybrid  WDM-PDM  MUX/DEMUX
comprising  of  a  10×10  bi-directional  AWG  MUX/DE-
MUX  and  a  PDC  was  established104. The  graphical  rep-
resentation of the hybrid MUX/DEMUX is shown in Fig.
14(a).  The magnified image of  the polarization diversity
circuit connecting with the two input WGs of the bi-dir-
ectional  AWG is  presented in Fig. 14(b). The PDC con-
sists of a PBS and a polarization rotator (PR). By employ-
ing a polarization-selective evanescent coupling in a bent
DC, the PBS is apprehended, while the PR is realized in a
corner-cut SOI  WG  by  the  intervention  of  two  hybrid-
ized modes105. Both the PBS and PR operate effectively in
a  wide  wavelength  range  to  be  well-suited  with  the
WDM network. The CT and the surplus loss of the AWG
could be minimized for realistic applications. One might
find that the efficiency of the AWG sturdily relies on the
spacing of the channel. The dimensions of the AWG cir-
cuit  increase  as  the  channel  spacing  reduces,  and  more
phase  errors  appear,  which  introduces  larger  CT.  The
channel spacing of 3.2, 2,  and 0.8 nm leads to the chan-
nel CTs of −17 – −23 dB, −15 – −20 dB, and −9 – −15 dB,
respectively106. To realize efficient SOI-WG AWGs with a
slender channel-spacing is still very challenging.

Micro-ring resonators (μ-RRs) have also been extens-
ively  used  for  the  realization  of  low-loss  and  low-CT
WDM  filters.  The  μ-RRs  based  on  SOI  WGs  are  quite
compact  due  to  the  formation  of  μ-bends78,72,107. Con-
sequently,  μ-RRs  based  on  the  SOI  platform  typically
have a wide free spectral range (FSR) ~20−30 nm, which
is  adequate  for  DWDM  networks  to  span  several
wavelength  channels.  Additionally,  by  optimizing  the
coupling coefficients,  box-like  filtering  feedback  is  cre-
ated  by  adding  an  array  of  μ-rings108.  A  new  hybrid
PDM-WDM MUX  is  proposed  by  incorporating  an  ar-
rangement  of  optical  filters  established  on  μ-RR  and  a
polarization-splitter-rotator  (PSR)47.  A  configuration
comprised  of  an  adiabatic  taper,  an  ADC  and  an  MMI
mode filter  is  used  for  the  PSR  demonstrating  an  out-
standing efficiency  in  a  wide  wavelength  range  in  com-
parison with a  previously reported device109. To stream-
line the  circuit  arrangement  and  the  wavelength  syn-
chronization of the μ-RRs, the cross- and through-ports
for  all  the  optical  filters  based  on  μ-RR  of  the  PSR  are
linked  via  the  bus  WG.  More  prominently,  these  μ-RRs
are wavelength selective for TE polarized light and offer
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extremely  high  ER>35  dB  which  significantly  decreases
the polarization CT owing to the PSR.

SDM  which  involves  the  use  of  distinct  modes  in  a
FMF,  is  a  recognized  prospective  technique  for  tackling
the  high  capacity  and  high  bandwidth  density  demands
in future  data  centers,  owning to  the  exponential  devel-
opment of data traffic in recent years. A mode multiplex-
er  for  FMF that  is  dependable,  efficient,  and low-cost  is
thus urgently desired. Integrated diffraction grating pro-
duced  on  the  SOI  substrate,  in  addition  to  fiber-based
photonic lanterns and laser inscribed 3D optical WGs, is
a  possible  contender.  Low  cost,  great  reliability,  mass-
production,  and  co-integration  with  other  integrated
photonic  devices  such  as  high-bandwidth  transceivers
are  all  apparent  advantages  of  monolithic
integration110,111. 

Hybrid WDM-MDM technique
One  more  operational  method  is  to  create  a  hybrid
MUX/DEMUX technology that allows WDM and MDM
simultaneously to additionally increase the volume of an
optical  link  when N number of  wavelengths  are  access-
ible. It is conceivable to acquire a high-volume data com-
munication with overall M × N channels when M modes
and N wavelengths  are  available  by  utilizing  multimode
optical  WGs  capable  of  supporting  multiple  guided
modes112,67,14.  Recently,  Photonic  crystals  (PhCs)  have
been  suggested  for  the  realization  of  PICs  due  to  their
outstanding  efficiency  and  small  footprint114,115.  The
photonic  bandgap  (PBG)  produced  by  the  periodically
modulated refractive  index  has  been  employed  in  vari-
ous  ways  to  manipulate  light75.  Compared to  traditional
counterparts, several devices have been introduced using
PhCs  with  promising  efficiency  and  footprint116−118. Hy-
brid WDM/MDM networks have been studied in ref.119−123.

A WDM/MDM scheme based on the SOI platform has
been  presented  in  ref.124 and  the  graphical  image  of  the
device  is  displayed in Fig. 15(a).  It  utilizes  strip  WGs to
realize MMI  and  DCs  for  multiplexing.  While  its  per-
formance is acceptable, it has a large footprint. A similar
issue  has  been  noted  in  the  devices  based  on  cascaded
RRs  and  DCs125.  The  SEM  image  of  the  manufactured
hybrid  WDM-MDM device  is  displayed  in Fig. 15(b–e).
Recently,  a  novel  design  of  a  hybrid  WDM-MDM
MUX/DEMUX is suggested which is based on a 2D PhC
structure126. The device is capable of simultaneously mul-
tiplexing  two  modes  and  two  wavelengths.  WDM  and
MDM  functions  are  realized  by  utilizing  two  identical
MMI couplers and asymmetric DCs, respectively. Tapers
are employed  at  WG intersections  to  evade  back  reflec-
tions. The device has a small footprint which is appropri-
ate  for  on-chip  incorporation.  Numerical  calculations
disclose  that  the  IL  and  CT  are  smaller  than  1.0927  dB
and –11.9024 dB, respectively, for all four channels. The
device configuration is shown in Fig. 15(f). 

Hybrid PDM-MDM technique
It is still a difficult task to realize innovative devices that
allow extra channels for a single wavelength to attain ul-
tra-high-volume  optical  interconnects.  The  channel
volume can be improved significantly by adding dual po-
larization  or  several  guided  modes.  It  is  undoubtedly
conceivable to mix several guided modes and dual polar-
izations in such a manner that many channels can be ac-
quired  for  a  single  wavelength  carrier18.  Hybrid  PDM-
MDM MUX/DEMUX  is  considered  as  the  main  com-
ponent operating  with  both  dual-polarization  and  mul-
tiple  modes128−131.  On-chip  PDM  and  MDM  devices
based on the Si platform have recently been documented
which  can  provide  ultra-compact,  CMOS-compatible,
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and  low-cost  modules132. To  realize  both  the  polariza-
tion and mode MUX/DEMUXs, two methods were pro-
posed,  “mode  evolution ”  and  “mode  coupling ” 133,15.  A
variety  of  ACs134,  MMI  couplers135,  and  Y-branches136

based architectures  have  been  realized  for  the  polariza-
tion or a mode MUX/DEMUX in the view of mode evol-
ution approach. While it is possible to obtain wide BWs
and high  ERs  for  these  devices,  due  to  the  mode  evolu-
tion  method,  the  footprints  are  relatively  large.  Various
asymmetric  directional  couplers  (ADCs)137,  grating-as-
sisted  ADCs138,  and  compactly  packed  WG  arrays  (DP-
WAs)139 have been  shown  to  achieve  ultra-compact  po-
larization and mode MUX/DEMUXs for the mode coup-
ling  approach.  The  advantages  of  multi-core  and multi-
mode techniques are combined in DPWA structure and
rather  than  employing  a  single  broad  multimode  WG,
the  DPWA  employs  a  series  of  thin  SOI  wire  WGs  of
varying  widths.  The  effective  width  of  the  DPWA  bus
WG  is  equivalent  to  that  of  a  standard  multimode  WG
since these WGs are tightly packed with nanometers size
gaps.  It  is  possible  to  develop  an  efficient  and  parallel
DEMUX  technique  with  a  large  working  wavelength
range. However, among these described MUX/DEMUXs,

two polarizations with only one fundamental mode were
controlled  in  a  polarization  MUX/DEMUX  or  two
modes  of  only  single-polarization  were  maintained  in  a
mode MUX/DEMUX. For the realization of the on-chip
hybrid MUX  network,  a  compact,  scalable,  and  broad-
band  MUX/DEMUX  supporting  more  effective  modes
on dual-polarization is critical.

In ref.13, a compact Si 10-mode hybrid MUX/DEMUX
is  demonstrated  established  on  3-cascaded  asymmetric
directional couplers (ADCs) based segments, 3-adiabatic
tapers,  and  a  PBS.  The  phase-matching  can  be  attained
by changing the widths of the bus WGs and access WGs
for the TM modes and TE modes,  respectively.  The nu-
merical  calculations  display  that  a  total  coupling  length
for TM1–TM3 and TE1–TE5 modes can be attained to be
55.4  μm.  Besides,  the  aggregate  loss  of  the  hybrid
MUX/DEMUX can be minimized due to the fewer tapers
in comparison  with  the  standard  cascaded  ADCs.  Like-
wise,  PBS is  optimized  with  a  small  footprint  of  7.0  μm
and high extinction ratios of 32.9 dB and 15.4 dB for the
TM0 and TE0 modes, respectively. The schematic repres-
entation  of  the  hybrid  MUX/DEMUX  is  shown  in Fig.
16.  Moreover,  we  have  listed  some  most  prominent
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research  publications  on  the  multiplexing  techniques
discussed in this paper as shown in Table 1. 

Author’s commentary on multiplexing
In this section, we would like to share some of our con-
tributions related to the multiplexing techniques. In our
previous work, we have theoretically and experimentally
demonstrated  the  rotation  of  multimode  light
beams153−155,  mode  division  multiplexing23,156,20, fabrica-
tion of diffractive optical elements for optical expansion
of  laser  fields  by  the  orthogonal  basis21,157−162,  diffractive
optical  elements  for  spatial  multiplexing163−169 and  laser
ablation  and  matter  structuring170−173.  Diffractive  optics

tools such as diffractive optical elements (DOEs) or spa-
tial light  modulators  (SLMs)  can  be  used  both  to  effi-
cient  multiplexing  structured  laser  beams  for  free-space
optical (FSO) information broadcast or input into single-
or multi-core fibers, and subsequent DEMUX of the sig-
nal  at  the  output  of  the  broadcast  network174.  The  most
advantageous feature of the FSO is the practically unlim-
ited  BW  at  optical  frequencies.  However,  the  effects  of
the natural random media significantly limit the possibil-
ities of the optical broadcast of information in free space.
To  overcome  this  problem,  researchers  suggest  using:
partially  coherent  radiation175−182.  DOEs  are  an  effective
tool not only for generating various types of laser beams
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Table 1 | Few  major  optical  multiplexing  papers  reported  in  recent  times.  IL:  Insertion  loss,  CT:  Crosstalk,  BW:  Bandwidth,
MT: Multiplexing technique.
 

Ref Year IL (dB) CT (dB) BW (nm)/∆λch (nm) MT

ref.140 2020 <4 –9.5 70 MDM

ref.141 2020 0.08, 0.19, 0.03 20 75 MDM

ref.142 2020 <0.5 –20 80 MDM

ref.143 2020 <1.1 –18 120 MDM

ref.144 2013 <1.5 <–9 100 MDM

ref.145 2013 ~0.3 <–36 100 MDM

ref.91 2013 0.3 –16 100 MDM

ref.146 2021 1.6 10 90 Hybrid PDM-MDM

ref.147 2021 – –49.93 to –45.8 164–310 WDM

ref.148 2018 0.32 –30 90 MDM

ref.149 2020 – –23 260 MDM

ref.150 2019 – –25 140 CWDM

ref.151 2014 0.6 –22 35 Hybrid MDM-WDM

ref.104 2015 7 –13 3.2 Hybrid WDM-PDM

ref.152 2016 1 <-22 3 Hybrid WDM-MDM

ref.47 2018 0.5–5.0 –16.5 3.2 Hybrid WDM-MDM
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but  also  for  their  superposition  with  desired  properties
which can  be  used  for  MDM  resistance  to  FSO  turbu-
lence influence183,153−155. Figure 17 illustrates phase DOEs
for  efficient  generation  multimode  Laguerre-Gauss
beams with 5 desired modes of indices (n, m)=(1, 1)+(3,
1)+(4, –3)+(5, –5)+(5, 1) (the upper row, 16-level phase)
and  with  6  desired  modes  of  indices  (n,m)=(2,  0)+(3,
–2)+(3, 2)+(4, –4)+(4, 0)+(4, 4) (the bottom row, binary
phase).

Also,  utilizing diffractive  optics  any pattern of  modes

with  preferred  weights  can  be  effectively  excited  in
FOs184−188. Figure 18 shows simulation  results  of  excita-
tion  and  propagation  of  selected  LP  modes  in  a  weakly
guiding step-index FO.

DOEs that produce a variety of mode beams in differ-
ent  diffraction  orders157−161 are  used  as  spatial  filters  to
investigate  the  transverse  mode  characteristic  of  light
and achieve  DEMUX at  the  output  of  the  optical  trans-
mitting  information  network189−192. Figure 19 shows  the
correlation  network  with  a  multi-channel  DOE  for
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instantaneous recognition of  individual  vortex positions
of  different  Laguerre-Gaussian  beams arbitrary  to  offset
from the optical axis.

Note that in this  case,  not only MDM is possible,  but
also  the  detection  of  a  variety  of  polarization  positions
(MDM+PDM)193−198. Figure 20 shows binary multi-chan-

nel DOE for examining the polarization and phase posi-
tions of vortex cylindrically polarized beams.

There  are  known  works  where  MDM,  PDM  and
WDM  are  combined199.  Multi-order  optical  elements
matched  with  the  laser  modes157,159,14,160,21 and  DOEs  for
1D,  2D  and  3D  spatial  multiplexing  of  different  light
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elements/units/primitives  (light  spots,  rings,  lines,
etc.)165,167,163,164,169,170 can be used to generate beams arrays
for SDM200,201 and perform the simultaneous coupling of
light  into  a  set  of  FOs,  including  MIMO202,203,156,67,204,205.
Figure 21 illustrates  multi-channel  binary  phase  DOE
matched with LP modes of a step-index FO which can be
used to detect 64 modes simultaneously. The results and
discussion  should  be  presented  in  a  logical  sequence  in
the text, tables, and figures; repetitive presentation of the
same data in different forms should be avoided. This sec-
tion should  consider  the  experimental  results  concern-
ing any hypotheses advanced in the Introduction. 

Concluding remarks
In conclusion, we have presented a detailed review of the
recent  advances  in  multiplexing  techniques  that  can  be
utilized in fiber optics and on-chip communication. Op-
tical multiplexing  is  the  practice  of  merging  several  op-
tical signals  into  one  to  make  maximum  use  of  the  gi-
gantic  bandwidth  volume  of  an  optical  channel.  The
concept is to split the vast bandwidth of fiber optics into
individual low  bandwidth  channels  so  that  multiple  ac-
cess  is  accomplished  through  lower-speed  electronics.
The  historic  background  of  the  multiplexing  can  be
found in  the  Introduction  section.  The  recent  develop-
ments  in  the  field  of  WDM,  PDM,  SDM,  MDM  and
OAMM  can  be  found  in  the  successive  sections.
Moreover,  three  different  kinds  of  on-chip  hybrid
MUX/DEMUXs are considered which are formed by the
integration of WDM with PDM, MDM with WDM and
MDM with PDM techniques as shown in Fig. 13. Hybrid
MUX/DEMUXs are formed as the result of the marriage
of various WDM, PDM and MDM elements such as ar-
rayed waveguide  gratings  (AWGs),  micro-ring  resonat-
ors  (μ-RRs),  polarization-splitter-rotators  (PSRs)  and
couplers.  Two  common  WDM  strategies  exist,  i.e.,
AWGs  and  μ-RRs,  which  are  effectively  comprehended
when wide channel spacing is adequate. Yet, it is not pos-
sible to accomplish lossless and low-CT AWGs or μ-RRs
having compact  channel  spacing.  Auspiciously,  by  op-
timizing the design and the manufacturing methods, this
can  be  solved.  In  recent  times,  high  performance  PDM
devices  comprise  polarization  rotators  (PRs),  and  PSRs
are industrialized.  As  a  new  functional  component,  dif-
ferent  structures  have  been  used  to  develop  MDM
devices. For  any  hybrid  MUX/DEMUX  networks  real-
ized with the MDM method,  low-loss and low-CT mul-
timode operation  is  considerably  preferred.  By  exploit-
ing  these  vital  devices,  numerous  on-chip  hybrid

MUX/DEMUX has been apprehended which results in a
significant  increase  in  the  channel  number  to  augment
the link volume of optical interconnects.
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